More and more these days, when I look at student work I’m just using it as a jumping off point for anything that I find interesting. When we started this project last June, I was only looking to explain how the student ended up writing what she did, but these days that requirement seems sort of restrictive. Different pieces of student work are interesting for different reasons, and what interests us is going to vary anyway.

To me, this mistake raises the possibility that it was a reading error. Reading errors tend to get poo-pooed by teachers — along with procedural errors, “stupid” mistakes, and guesses — as the results of non-mathematical issues. Either the kid was rushing, or the kid wasn’t thinking, or the kid was sloppy, etc.

Maybe that’s right. But it also seems to me that as you get better at math you get better at noticing the structure of these sorts of questions. You know what details are crucial, you eyes start to dart in different ways, you chunk the expression differently.

In other words, you learn how to read mathematically. And while some people would prefer to distinguish between mathematical knowledge and mathematical conventions and language, such distinctions don’t really do much for me. Being able to parse mathematical language seems bound up with mathematical knowledge.

In summary: A lot of the things that we call “reading errors” or “sloppiness” are really issues in mathematical thinking.

In this case I’ll offer a testable hypothesis: People who don’t really get how negative numbers work don’t see a distinction between subtraction symbols and negative signs, and will tend to elide them in reading a problem. People who do get negative numbers immediately read the numbers, along with their sign, and then read the operation between them.

(Three cheers to Andrew for the submission!)

I’m not sure that I agree with the teacher’s diagnosis that this sort of mistake is procedural. Presumably, she means that the mistake was the result of remembering some sort of algorithm, a wrong algorithm. But what sort of division algorithm would lead you to multiply 2 and 3? in this situation?

On twitter, someone suggested (was it you?) that the issue here was that 1 divided by 1/3 is 3. And then twice that would be 6.  This would then be an instance of a more common pattern of error, the “it’s always linear” error. (Was it Dave who said this? Maybe this was Dave.)

This actually fits pretty well with the student’s explanation. It’s not a bad take.

Do you agree? The first three times that I wrote this post I said something like “The ‘linearity’ hypothesis is a pretty good one, but it doesn’t quite fit with what the student said. I’d suggest that the student had an association between the numbers 1, 2, 3 and 6, and it’s that instant judgement that her explanation is aiming to justify.” But now I’m not sure if I can really find any fault with the linearity hypothesis.

People who have more experience with fractions than I have: is the linearity explanation one that resonates with your experience of kids learning to divide fractions?

(P.S. I’ve got 4th and a 5th grade assignments, along with my high school classes this year. I’m excited to bulk up my understanding of little person stuff. Any of your submissions would help me test the theory that analyzing student work is a solid way to help build pedagogical content knowledge. SUBMIT!)

In this 7th grade class, they’re studying interesting ways of counting up the boxes in the border of a square grid.

They originally start with a 10 by 10 grid, but soon after they expand to a  6 by 6 gride and a 15 by 15 grid and use their techniques to count the squares in the new border. Then, in class, they introduce the notion of variable and set about shortening one of their verbal explanations using variables.

On the board are two expressions: 6 + 6 + 4 + 4 and 15 + 15 + 13 + 13. The teacher tasks the students with writing an algebraic expression that represents the number of squares on the border. The following is a recorded interaction among students during their group work:

Sharmeen: s + s + (s-2) + (s-2). Though that’s kind of complicated. Is there any other way to put it?

Antony: What is it?

Sharmeen: Uh, mine? It was s + s + (s-2) + (s-2)

Kim: No we had to, like, um, how about we write a variable for…make a variable for thirteen.

Sharmeen: Yeah, oops. Oh, m equals… OK, so it’s s + s + m + m.

What make you of this?

[All of this is lifted from "Connecting Mathematical Ideas".]

I just dug this up. It’s what I handed back students after a “pre-quiz” (i.e. a quiz at the end of the unit, but before their quiz). I had forgotten that during that first year I handed back these things with class performance percentages on them.

Anyway, the way those percentages break down is interesting to me. Is it surprising that kids had so much trouble with negative exponents in numerical context, but had such less trouble with variables?

Comment on anything that you like, but here are some prompts:

• Do you like my questioning? (Because I didn’t. Notice that moment when I pause and try to unask my question?)
• Describe, as best you can, the way that this kid thinks about the Distributive Property.
• What would you say next, if you were me?
• Does this video have implications about the way that you’d teach this topic? (And, come on, don’t give me that “they need lots of practice stuff.” Of course they do. But what else?)
• Do you prefer having videos over images on this site? (Because I have about a half hour more footage from my work with this kid…)

Looking forward to a great bunch of comments here. Don’t let me down?

Update:

Here’s how I responded:

This is a straight up student-empathy question: what was this kid’s thought process like?

Thanks to Tina for the submission!

Editor’s Note: I categorized this as Grade 7 – Geometry in the CCSS, but I’m not really sure if that’s right. Where does this belong?

What’s the fastest way to help this kid?

Incidentally:

Where does this mistake come from? I mean, the kid knows that 1 – 1 = 0, right? So does the kid think that 1 – (-1) = 0 too, or does the kid misconstrue this as 1 – 1? What’s your theory?

Thanks to Chris Robinson for the work sample.