Hi everyone,

My name is Bryan Penfound. Awhile back I was asked if I would be interested in helping out at MathMistakes and I said yes not knowing how challenging this term would be for me. Now that I have settled in a little bit, I thought I was a bit overdue for a post, so here goes!

Recently while volunteering at a local high school in a grade 9 classroom, I had to opportunity to observe students’ answers to the following question: “Create a trinomial in the variable t that has degree 3 and a constant term of -4.”

Here are five of my favourite responses:


I would love to get some discussion going. Choose one of the polynomials above and try to deconstruct what the student knows and what the student still has misconceptions about. What follow-up questions might you ask to learn more information about how the student is thinking? What follow-up questions might you ask to help with any current misconceptions?

In an earlier post, I shared Michael Fenton’s scenario and categorized the responses he got on twitter.

There were at least seven distinct responses that teachers offered to Fenton’s prompt. Wow! This makes me think two things:

  1. Fenton’s scenario was so thought-provoking that it yielded an amazing variety of responses.
  2. How come there was so much disagreement about how to act in this scenario?

Part of the disagreement, I think, comes from what went unspoken in Fenton’s mistake. We didn’t know if this mistake was shouted on in a discussion or found on a piece of paper. We don’t know if this is one of those times when we can afford to have a one-on-one conversation with a kid in response to her mistake, or if our response will be scrawled on her paper and returned. Was this a common error, or an isolated mistake? Could our response be an activity for the class instead of a chat?

While one-on-one conversations are crucial in teaching, they are hard to talk about. By their nature, they’re improvisational and somewhat unstructured. I’d also argue that opportunities for one-on-one conversations can be rare, and they get rarer as the number of students in your class grows larger.

Revising the Scenario

So let’s add some details to Fenton’s scenario. This was a mistake in an Algebra 1 class. Smart kids, thoughtful teacher, but when she collects papers after an ungraded check-in she finds that about half her class made Fenton’s mistake. Oh no! She decides that she’s going to launch class the next day with a brief activity to help advance her kids’ thinking.

Her first idea is to try a string of equations. She has three different drafts. Which one would you choose, and why?

Equation String 1

Fenton's Mistake - Various Approaches (5)

Equation String 2

Fenton's Mistake - Various Approaches (1)


Equation String 3

Fenton's Mistake - Various Approaches (2)

Other Activities

Then, she has some other ideas. Maybe equation strings aren’t the right move? She comes up with three other activities: Working With Examples, Which One Doesn’t Belong and Connecting Representations.

Working With Examples


Connecting Representations

Fenton's Mistake - Various Approaches

Which One Doesn’t Belong?

Fenton's Mistake - Various Approaches (6)


The meta-question here is about the conversation. Can we have a conversation with so many options? I don’t know. I worry that maybe I should have just limited discussion to the equation strings.

What would do?

My first reaction is that I like the equation strings, because it most directly gets at the issue of overextending the zero-product property to other equations.

But what I really want to do is lay out a sequence of 3-4 activities that I could do in sequence to develop this idea for a class.

And do I know enough to answer that question? Wouldn’t that depend on the math that we’d already studied and the math that’s coming up next?

Do we learn anything from thinking about these questions?


Lots of responses to this great tweet. I wanted to understand the themes in what people were replying, so I went through everything and tried to summarize it here.

Response #1: Check Your Work, Start a Conversation

Response #2: Just Check Your Work (No Conversation Mentioned in Tweet)

Response #3: Explain the Zero Product Property

Response #4: Thinking About How to Teach the ZPP Unit

Response #5: Switch to a Graphical Context

Response #6: Ask for Explanations

Response #7: Run a New Activity with the Whole Class

I’m sure I didn’t capture everyone’s response, and I don’t know what any of this means. But there you go.

Predict: What responses to this prompt would you expect from my Algebra 1 students? (Prior to this problem my kids had mostly worked with integer arithmetic, solving linear equations in one-variable and graphing scenarios and equations.)


Study: What do you notice in this (small) class set of responses? Note anything that surprises you.

Kid 1:


Kid 2


Kid 3


Kid 4


Kid 5




Kid 6


Kid 7


Kid 8


Kid 9


Wrap Up

How did your predictions hold up? What surprised you the most? What’s something you wish you knew more about?


Take a moment  before reading on. How many squares would be in the 7th step of this pattern? In the 43rd? In the nth?

Take another moment: what mistakes would you expect to see?

From looking closely at student work with other visual pattern problems, you’d expect kids to think about the change of this pattern in two different ways.

  1. Thinking about the pattern change recursively – Students would think about the pattern as adding four squares on to the previous image at the corners.
  2. Thinking about the pattern change relationally – i.e. by relating the step number to some part of each picture (e.g. number of squares in diagonals,  number of sets of four squares on the corners, etc.)

The relational goggles are more powerful and useful. It helps us calculate any step of the pattern efficiently. It can be generalized to linear functions. Further, most students have an easy time seeing this pattern’s recursive growth. The real learning that can happen with this pattern, for most students, happens in the move from a recursive to a relational perspective.

With that in mind, I want to share some mistakes that my students made on this pattern. I’ve organized the mistakes into two categories, and I’m curious if you’ll see them the way I do.

Category 1:









Category 2:

mistake5    mistake1


The way I see it, all the mistakes that I placed in Category 1 show strong evidence of seeing the pattern’s change relationally. Both of the students in Category 2 show a recursive perspective. In fact, the students in Category 2 don’t even make any mistakes!

What feedback do you think the students in Category 1 should get? What about the students in Category 2?

If all you care about is whether a student’s answer is right or wrong, then all the students in Category 1 will get some sort of nudge towards the right answer, while the students in Category 2 will be praised for their correct answers and maybe encouraged to keep on going.

But the students who are able to relate the step number to part of each picture are actually in pretty great shape. Yeah, they made some mistakes, but most of those mistakes are “off by 1” or “sloppy errors,” the sorts of mistakes that are almost always the result of paying attention to something besides the calculation or step number. (In this case, attention is being sucked up by the need to focus on the structure of the pattern at each step, a way of thinking that is brain-consuming when it’s new.)

On the other hand, the second group of students are getting right answers using a limited perspective. Ultimately, we’d like to help them see a relational perspective. Even though they have the right answers, they’re struggling here.

It’s not news that kids who get the wrong answer might be thinking in more sophisticated ways than students who got some question correct. What is news, I think, is that we ought to be as explicit as possible to ourselves about how those students are thinking with more sophistication. That’s the sort of thinking that can help us be strategic about the sort of feedback that we can give.

What feedback should Category 1 get? I’m inclined to use a very light touch with these students. They’re working within a powerful framework — they’ll likely be able to tease out where they went wrong. Even though they are using a strong perspective to analyze the problem, I still think it’s worthwhile to ask them to correct the calculations. First, because even though getting a correct answer isn’t all that matters, it also matters to students and to me. I want to show that I value correctness. Second, because seeing what doesn’t need to change in their answer is ultimately good for learning. I see this as a chance to adopt that relational view on the pattern again (“Oh wait how did I do this…Oh yeah!”).

Here are some comments I’d give Category 1 kids:

  • I love the way you brought the step number into your calculation.
  • Can you revisit this? Something’s wrong, but I’m not sure what.
  • Your rule here is excellent. Can you check these answers again?

Some teachers will be tempted to encourage Category 2 students to continue their work, even if it’s within a recursive perspective. They might agree that the goal is ultimately for these students to adopt a relational perspective, but they’re willing to bet that kids will come to a “realization” while working recursively all on their own. Or, teachers want to affirm these students’ good thinking, so they are reluctant to offer them another way of thinking. They’re willing to defer the relational view to some other time, and maybe the kid will just pick up the relational view during a class discussion or by talking with a classmate.

Those are all legitimate moves, depending on the kid and the classroom and the course. But what if it’s important — for the kid, classroom, course — to help these students move from a recursive to a relational perspective? What feedback could they get then?

For these students, we want to offer them a new way of thinking. Here’s what I might say:

  • Lovely work so far. Can you see where the step number appears in each diagram, and use that to find the 43rd step?
  • I see the 4th diagram as made up of 3s. Can you see it as made up of 4s? Try to use that to find the 43rd step.
  • Nice job noticing the growth pattern. Can you find a solution to the 43rd step that doesn’t involve adding 2 forty-three times?
  • Can you show that there’s a counter-example to the “multiply the step number by 4” rule?

Any other ideas, people?

I’ve squawked a bunch about feedback. I’ve likewise done my share of squawking about student mistakes. I’m realizing now just how much that squawking has been missing out on by failing to get specific about student thinking. This isn’t the familiar complaint (familiar to me, at least) that by focusing on mistakes we only see students for their errors. Or maybe this is that “deficit model” complaint, but I had always interpreted as saying something about what we value in our students, and now I’m seeing how only thinking about mistakes really gives you nothing to latch the errors on to. It’s really limiting.

The flipside of this realization is that to really get at mistakes, feedback, hints or next instructional steps, we need to map out the terrain of student thinking. And there’s no way to do that without looking at sets of student work, rather than some single kid’s  thinking. And there’s no way to do that without getting messy with the details of particular mathematical topics.

This is as true in my teaching as it is for my work here or anywhere else. My best feedback comes when it’s purposefully guided by some sort of explicit story about how student thinking develops for this type of problem. This is probably something I first really learned how to do with multiplication in 4th Grade, and it’s heavily influenced by the way I read the work of the Cognitively Guided Instruction team.

This post is a long, long way of saying that while I’d still love it if you send in individual mistakes that tickle your fancy in any way, I would LOVE it if you could send me a class set of really anything that your students have done, and especially if it’s from a geometry unit or a geometry class. I would be eternally grateful for your class scans: michael@mathmistakes.org. (I’m really good at quickly anonymizing student work.)

Next post: more on why class sets are the best.

Previously: http://mathmistakes.org/visual-patterns/

In a lot of ways, it’s much easier for me to come up with helpful feedback to give on rich, juicy problems (see here) than it is for your typical quiz or test. I find it much harder to think about how to give feedback that helps a kid’s learning when (a) the quiz is full of non-open questions and (b) the kid’s solutions don’t show a lot of thinking. But a lot of classroom assessments end up like that, and it’s important to figure out how to deal with those tough situations effectively.

So: What would you write as feedback on this quiz?




Some constraints/notes, that you should feel free to reject or challenge:

  1. Assume that we’re dealing with written feedback here. Not a conversation.
  2. Assume that we don’t have to write a grade on this piece of work. (If we wrote a grade on here, some research indicates that would ruin any feedback we gave.)
  3. You might decide to give feedback on every question of this quiz, you might not.

I’ll jump in with my thoughts in the comments. Here are some questions about your choices that I’m wondering about:

  • Would you choose to mark the questions as right/wrong?
  • Would you try to find something to value about this kid’s work in your comments, or will you be all hardass instead?
  • Would you ask questions or give suggestions?
  • Would you write one, several, or many comments?
  • Would you reject the constraints in some way?
  • Would you ask the kid to explain himself?

Excited to read your thoughts!


Kids just can’t seem to figure out absolute value. Pat writes,

“I’ve posted a mistake I see ALL THE TIME from my students when working on Absolute Value Equations. Looking for any advice on how other teachers are handling this issue. Thanks!”

Incidentally, I think that there’s a very good argument for this sort of thing being struck from the curriculum in its entirety. It’s entirely isolated in the curriculum, unconnected to anything else.

Thanks to Pat John for the submission!


Check out this kid’s explanation for why you end up with “+3x” from “-(-3x)”:

“You have -3x, so that’s three negatives, and then you have this other negative and that makes four…”

You can find this explanation at around 3:33 in the video below:

Exponents strike again!

(Or, maybe I misunderstood the kid’s explanation in the video? Lemme know if I did, please!)

Thanks to Jonathan for the submission.