In an earlier post, I shared Michael Fenton’s scenario and categorized the responses he got on twitter.

There were at least seven distinct responses that teachers offered to Fenton’s prompt. Wow! This makes me think two things:

  1. Fenton’s scenario was so thought-provoking that it yielded an amazing variety of responses.
  2. How come there was so much disagreement about how to act in this scenario?

Part of the disagreement, I think, comes from what went unspoken in Fenton’s mistake. We didn’t know if this mistake was shouted on in a discussion or found on a piece of paper. We don’t know if this is one of those times when we can afford to have a one-on-one conversation with a kid in response to her mistake, or if our response will be scrawled on her paper and returned. Was this a common error, or an isolated mistake? Could our response be an activity for the class instead of a chat?

While one-on-one conversations are crucial in teaching, they are hard to talk about. By their nature, they’re improvisational and somewhat unstructured. I’d also argue that opportunities for one-on-one conversations can be rare, and they get rarer as the number of students in your class grows larger.

Revising the Scenario

So let’s add some details to Fenton’s scenario. This was a mistake in an Algebra 1 class. Smart kids, thoughtful teacher, but when she collects papers after an ungraded check-in she finds that about half her class made Fenton’s mistake. Oh no! She decides that she’s going to launch class the next day with a brief activity to help advance her kids’ thinking.

Her first idea is to try a string of equations. She has three different drafts. Which one would you choose, and why?

Equation String 1

Fenton's Mistake - Various Approaches (5)

Equation String 2

Fenton's Mistake - Various Approaches (1)


Equation String 3

Fenton's Mistake - Various Approaches (2)

Other Activities

Then, she has some other ideas. Maybe equation strings aren’t the right move? She comes up with three other activities: Working With Examples, Which One Doesn’t Belong and Connecting Representations.

Working With Examples


Connecting Representations

Fenton's Mistake - Various Approaches

Which One Doesn’t Belong?

Fenton's Mistake - Various Approaches (6)


The meta-question here is about the conversation. Can we have a conversation with so many options? I don’t know. I worry that maybe I should have just limited discussion to the equation strings.

What would do?

My first reaction is that I like the equation strings, because it most directly gets at the issue of overextending the zero-product property to other equations.

But what I really want to do is lay out a sequence of 3-4 activities that I could do in sequence to develop this idea for a class.

And do I know enough to answer that question? Wouldn’t that depend on the math that we’d already studied and the math that’s coming up next?

Do we learn anything from thinking about these questions?


Lots of responses to this great tweet. I wanted to understand the themes in what people were replying, so I went through everything and tried to summarize it here.

Response #1: Check Your Work, Start a Conversation

Response #2: Just Check Your Work (No Conversation Mentioned in Tweet)

Response #3: Explain the Zero Product Property

Response #4: Thinking About How to Teach the ZPP Unit

Response #5: Switch to a Graphical Context

Response #6: Ask for Explanations

Response #7: Run a New Activity with the Whole Class

I’m sure I didn’t capture everyone’s response, and I don’t know what any of this means. But there you go.

Predict: What responses to this prompt would you expect from my Algebra 1 students? (Prior to this problem my kids had mostly worked with integer arithmetic, solving linear equations in one-variable and graphing scenarios and equations.)


Study: What do you notice in this (small) class set of responses? Note anything that surprises you.

Kid 1:


Kid 2


Kid 3


Kid 4


Kid 5




Kid 6


Kid 7


Kid 8


Kid 9


Wrap Up

How did your predictions hold up? What surprised you the most? What’s something you wish you knew more about?

In a lot of ways, it’s much easier for me to come up with helpful feedback to give on rich, juicy problems (see here) than it is for your typical quiz or test. I find it much harder to think about how to give feedback that helps a kid’s learning when (a) the quiz is full of non-open questions and (b) the kid’s solutions don’t show a lot of thinking. But a lot of classroom assessments end up like that, and it’s important to figure out how to deal with those tough situations effectively.

So: What would you write as feedback on this quiz?




Some constraints/notes, that you should feel free to reject or challenge:

  1. Assume that we’re dealing with written feedback here. Not a conversation.
  2. Assume that we don’t have to write a grade on this piece of work. (If we wrote a grade on here, some research indicates that would ruin any feedback we gave.)
  3. You might decide to give feedback on every question of this quiz, you might not.

I’ll jump in with my thoughts in the comments. Here are some questions about your choices that I’m wondering about:

  • Would you choose to mark the questions as right/wrong?
  • Would you try to find something to value about this kid’s work in your comments, or will you be all hardass instead?
  • Would you ask questions or give suggestions?
  • Would you write one, several, or many comments?
  • Would you reject the constraints in some way?
  • Would you ask the kid to explain himself?

Excited to read your thoughts!