How does 5i^2 become 4?

pic1

This come via Lois Burke on twitter, and immediately Max shows up with a possible explanation.

Dave has a different idea. Maybe the student was thinking in words — “5 and minus 1” — and this turns into its homonym “5-1.”

Personally, what I have the easiest time imagining is that the student just had “combine 5 and -1” on their mental ledger. When it came time to address that ledger, there was so much other stuff they were paying attention to that they slipped into the most natural sort of way to combine numbers they had, which is adding. (I like the metaphor of slipping. You’d very rarely see a kid slip in the other direction — from 5 + (-1) to 5 x (-1) — I think. There is a direction to this error.)

Here are the activities we came up with to help develop this sort of thinking in class. Ideas for improvement? More ideas? Other explanations of the student’s thinking?

Response to 5i^2 --- -4 Mistake

Response to 5i^2 --- -4 Mistake (2)

Response to 5i^2 --- -4 Mistake (1)

UPDATE:

Pam Harris has an idea:

Love it. Here’s a digital version.

Response to 5i^2 --- -4 Mistake (1)

John Golden point out that there might be issues with the Which One Doesn’t Belong puzzle, so I offer this as an alternative.

Response to 5i^2 --- -4 Mistake (4)

John also offers a different problem string: “I’d be curious to see 5+i, 5+i^2, 5+i^3, 5+i^4, 5i, 5i^2, 5i^3, 5i^4.”

Comparing Parts of Sides Instead of Whole Sides

ClVGt_bWgAAiU03

What is the thinking that led this student to make this mistake?

I’ve been teaching geometry for six years, and I figure I must have seen this mistake dozens of times. It’s so common that I have a name for it in my class — it’s a part-whole issue. Students know that AD is to DB as AE is to EC, and I think DE gets (correctly) associated with AD and AE while BC gets (correctly) associated with DB and EC. The issue, though, is that AD, DE, AE are all whole sides whereas as DB and EC are parts of sides. So while this student is correct to associate these sides, the student is comparing whole side lengths to parts rather than finding the proportion between different whole side lengths.

I’d be pretty surprised if other geometry teachers haven’t seen this mistake too, and I’d be interested to hear their explanations of why this mistake is so common.

When I shared this on twitter, the main conversation was about the quality of the problem, and especially the fact that this diagram is not to scale.

I was surprised by this response for two reasons:

  • While I wouldn’t want my students to start studying this math with this task (they didn’t) I think the wildly out-of-scale diagram is a nice way to draw students’ attention to the underlying relationships between the sides. I often encourage students to make quick sketches to help guide their thinking, and these sketches don’t have to be to scale in order to be helpful.
  • Most importantly: The student whose work we’re studying did not have an issue with the diagram! He had successfully solved the first four problems, and then he offered a reasonable (but incorrect) answer to the last one. The underlying issue this student had is easily explained without the diagram, and it’s one that I’ve seen often with accurate diagrams.

Then again, there were so many people on twitter suggesting that this problem has major issues, it’s making me pause and wonder if they have a point. I’ll have to think more about it.

In any event, I then started thinking about addressing and furthering the thinking that this student had. This wasn’t just an isolated mistake — a lot of students in class had similar issues. I wanted to start class with an activity that would help further their thinking on this type of problem. What activity could I do?

Because I wanted to help students see the subtle difference between part/whole and whole/whole comparisons, I decided to use a Matching Connecting Representations activity (see more of these here).

I came up with two different versions. Any ideas on how to improve them? Would they spur kids to think about different strategies?

pic2 pic1

 

Featured Comments: 

Some dissent from S Freedman:

I really like the lack of scale in the drawings. It’s important to teach that diagrams can be misleading. The math isn’t lying, just their unconscious interpolating brains.

Max wants to tackle the ambiguity with the diagram head-on, and offers a “Which One Doesn’t Belong” activity for doing so.

wodb

5 out of 6 Books

unnamed

 

At first, this is what I thought the student had done:

  • First, the student drew six circles to represent “out of 6 books.”
  • Then, they distributed, one-by-one, the 66 books into each of the 6 circles. (If they just put 11 in each, why tally them?)
  • Then, the student searched for a way to represent the “5 out of” that are non-fiction.
  • It follows that the remaining books are fiction. That makes six sixes, or 36 books.

But then Bridget and Julie came in with a fantastic, different interpretation. Their’s feels like an improvement on my first draft.

We then got to work trying to come up with some activities to address this work. Suppose that your class of 6th Graders try this problem, and a lot of your class has struggles that are similar to the work above. You’re planning tomorrow’s lesson. What activity would you begin class with?

This is what we came up with. Which of these activities do you think would be most helpful? Are there any changes you would make to any of them? Is there a combination and sequence of these activities that you think would work particularly well? (I took a shot at sequencing them below. Some details on activity structures are here.)

5 out of 6 Mistake-page-005

5 out of 6 Mistake-page-003

5 out of 6 Mistake-page-004

5 out of 6 Mistake

5 out of 6 Mistake (1)

 

Which Activity Would You Choose?

In an earlier post, I shared Michael Fenton’s scenario and categorized the responses he got on twitter.

There were at least seven distinct responses that teachers offered to Fenton’s prompt. Wow! This makes me think two things:

  1. Fenton’s scenario was so thought-provoking that it yielded an amazing variety of responses.
  2. How come there was so much disagreement about how to act in this scenario?

Part of the disagreement, I think, comes from what went unspoken in Fenton’s mistake. We didn’t know if this mistake was shouted on in a discussion or found on a piece of paper. We don’t know if this is one of those times when we can afford to have a one-on-one conversation with a kid in response to her mistake, or if our response will be scrawled on her paper and returned. Was this a common error, or an isolated mistake? Could our response be an activity for the class instead of a chat?

While one-on-one conversations are crucial in teaching, they are hard to talk about. By their nature, they’re improvisational and somewhat unstructured. I’d also argue that opportunities for one-on-one conversations can be rare, and they get rarer as the number of students in your class grows larger.

Revising the Scenario

So let’s add some details to Fenton’s scenario. This was a mistake in an Algebra 1 class. Smart kids, thoughtful teacher, but when she collects papers after an ungraded check-in she finds that about half her class made Fenton’s mistake. Oh no! She decides that she’s going to launch class the next day with a brief activity to help advance her kids’ thinking.

Her first idea is to try a string of equations. She has three different drafts. Which one would you choose, and why?

Equation String 1

Fenton's Mistake - Various Approaches (5)

Equation String 2

Fenton's Mistake - Various Approaches (1)

 

Equation String 3

Fenton's Mistake - Various Approaches (2)

Other Activities

Then, she has some other ideas. Maybe equation strings aren’t the right move? She comes up with three other activities: Working With Examples, Which One Doesn’t Belong and Connecting Representations.

Working With Examples

pic1

Connecting Representations

Fenton's Mistake - Various Approaches

Which One Doesn’t Belong?

Fenton's Mistake - Various Approaches (6)

Commentary

The meta-question here is about the conversation. Can we have a conversation with so many options? I don’t know. I worry that maybe I should have just limited discussion to the equation strings.

What would do?

My first reaction is that I like the equation strings, because it most directly gets at the issue of overextending the zero-product property to other equations.

But what I really want to do is lay out a sequence of 3-4 activities that I could do in sequence to develop this idea for a class.

And do I know enough to answer that question? Wouldn’t that depend on the math that we’d already studied and the math that’s coming up next?

Do we learn anything from thinking about these questions?

 

How Teachers Would Respond to A Quadratics Mistake

Lots of responses to this great tweet. I wanted to understand the themes in what people were replying, so I went through everything and tried to summarize it here.

Response #1: Check Your Work, Start a Conversation

Response #2: Just Check Your Work (No Conversation Mentioned in Tweet)

Response #3: Explain the Zero Product Property

Response #4: Thinking About How to Teach the ZPP Unit

Response #5: Switch to a Graphical Context

Response #6: Ask for Explanations

Response #7: Run a New Activity with the Whole Class

I’m sure I didn’t capture everyone’s response, and I don’t know what any of this means. But there you go.