Categories
Decimals Numbers & Operations in Base 10

Early Decimal Difficulties

IMG_3362

 

Write down 0.1, and add a tenth to it. Write that number down. Then add 0.2 to 0.1. Write that down. Then add one to 0.1.

In case it’s hard to see, in response to “What’s one tenth added to 0.1?” these students responded

  • 1.1, then crossed out with a “2” written over it
  • 0.01
  • 0.11

When asked “What’s 1 added to 0.1?” they responded

  • 0.2
  • 0.2
  • 1 0.1 (which looks like a mixed decimal to me which is pretty cool)

I’m trying to think through what class looks like tomorrow. It seems that I’ve got kids who certainly need time to work with 0.1, 3/10, 0.4 and other tenthy ideas. I also have students who don’t really have much of a grasp on how to use the hundredths place.

I’m going to take a page out of “Extending Children’s Mathematics” and give kids a version of this problem tomorrow:

Francine is making chili. She adds .1 grams of her secret ingredient to each liter of chili that she makes. If she has 5 grams of her secret ingredient, how many liters of chili can she make?

But what numbers would be most helpful to use in this problem? I’m struggling with that question right now. It seems like anything involving 0.1 or any tenths would be good, I guess. I think it’s probably most important for these students to relate decimals to whole numbers.

…and then the more practical concerns arise. What do I do for the quick finishers? They’ve done a lot of problems like this — will this problem feel tedious to them? Should I retrench with some of the part/whole stuff that we worked on yesterday? Maybe spend the first half of class solving chili problems and plan for a discussion, and then try this shading in activity again during the second half? Ooh, we could structure the second half of class around comparing 0.25 and 0.3, like my textbook says, or maybe the kids won’t be ready to discuss decimals that go into the hundredths…

Categories
Decimals Numbers & Operations in Base 10

Shade in 0.5 and 0.49 in any grid

decimals2

 

She chose to shade in 5/100 and 49/1000.

The question for me is whether I try to pin this down in terms of shading in/part whole representations, or try to embed these decimals in a grouping word problem. I think I’m going to go for a bit of a combo approach.

Categories
Decimals Numbers & Operations -- Fractions

We have no idea whether 0.1 is 1/10 or 1/100.

I put “0.1” on the board and asked students what they’d call this. A kid said “one tenth,” but that quickly became controversial.

Question: how do you think these kids are seeing 0.1?

Categories
Expressing Geometric Properties with Equations Midpoint

“Find the midpoint between (2,5) and (2,396)”

What would you predict? Here are some twitter responses:

Here’s your answer key…

First Place:

IMG_3357

 

Second Place:

IMG_3360

 

Third Place

IMG_3358

Categories
Area Geometry High School: Geometry Right Triangles

Using a bad base

IMG_3353

 

I keep on seeing this in my Geometry classes this year. Tasked with finding the area of a right triangle, kids move toward the hypotenuse even if two of the other sides are given. Then they end up stuck looking for a height that they can’t find.

I’m pretty convinced — based on talking to kids and looking at their work — that this is all about how they see right triangles. These kids must be seeing hypotenuses as bases, and it must feel weird for them to treat the legs as bases. Or maybe instead it’s about the height? Maybe it feels strange to them to use a leg as a height?

Categories
Fractions Numbers & Operations -- Fractions

Three Fifths of a Triangle

Three fifths triangle

 

Shared by Tracy on twitter, and a great conversation ensued.

 

https://twitter.com/BHS_Doyle/status/452804242672476160

Categories
Building Functions Rational Functions

“y=x/(x+1) has got to be a line.”

We’ve been studying graphs of rational functions in Precalculus.

Me: “Take 1 minute with your group: what will the graph of y = x/(x+1) look like?”

One group, during discussion, asserted that it had to be a line, using a sort of process of elimination: it’s not a parabola, it’s not cubic, it’s not a hyperbola.

Interesting, right? Why does this seem like a linear equation? I guess that it sort of looks like one…

Categories
Building Functions Feedback Functions Inverses

Finding Inverse Functions

complex1

 

complex2

 

What can we say that this student does or does not understand about inverse functions?

Categories
Complex Numbers The Complex Number System

Complex Number Mistakes Are Often Algebra Mistakes

complex3 (720x960)

 

One of my little obsessions is teaching complex numbers, but it’s really hard to find genuine instances of complex number mistakes. You start looking around at the most pernicious complex number mistakes, and they’re a lot like this one here: essentially algebraic. These mistakes, to my mind, are indistinguishable from the sorts of mistakes you’d expect from (4-6x)^2.

That observation is probably helpful in itself, though. The mistakes that we see from kids working with complex numbers are essentially algebraic mistakes. That means that kids aren’t really seeing much of a difference between the algebra that they’re usually asked to do and their work with complex numbers. Complex number arithmetic is just algebra with a twist.

Categories
Fractions Number & Operations -- Fractions

Using Subtraction to Divide Fractions

Dividing Fractions using Repeated Subtration 3-4-2014

 

Thanks for this, Graham!

What’s interesting about this to me is the mental connection between division and subtraction. I doubt that this kid has anything like an explicit model of division that involves “taking away,” but it makes sense to me that the ideas of subtraction/division would be associated much in the way that addition/multiplication are.

All the more reason to make sure that there’s a robust understanding of multiplication that goes beyond “repeated addition,” no?